If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-10q-3000=0
a = 1; b = -10; c = -3000;
Δ = b2-4ac
Δ = -102-4·1·(-3000)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-110}{2*1}=\frac{-100}{2} =-50 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+110}{2*1}=\frac{120}{2} =60 $
| 3x+5=-x-7= | | 7y+5=8y-17 | | b=655.096+9.563(55)+1.85(172)-4676(70) | | -6h=4-3+h+11 | | n/5.2=2.5 | | (2,5x-7)(8x-9,6)=0 | | 0.25k=-0.75k+9 | | 4.20x^2-2.71x-1.42=0 | | -x+5=36 | | 180=3x+51 | | 1000x=0.005 | | 31/2/5=x/6 | | 3.5/5=x/6 | | 205=2-y | | 6-2(x+5)=4x | | 147=14r+2r^2 | | 5(7-2,2x)=9-6x | | 7(x-2)-2(x+6)=-6 | | 6x+3=9x+212 | | X+2x+3x+120+90=360 | | 2x-5+3x-20+10x=110+180 | | 8x-2(3+4x)=-6 | | 7a+18=102a= | | 2x-5+3x-20+10x=110 | | 2x-5+3x-20+10x-110=180 | | 31(g+6)=961 | | 4(3x+3)=12x+9 | | 4^x+2·14^x=3·49^x | | 9=309-w | | 106-2h=6 | | 100=2x+54 | | 21-3f=15 |